

GPNMB Antibody (F45454)

Catalog No.	Formulation	Size
F45454-0.4ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.4 ml
F45454-0.08ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.08 ml

Bulk quote request

Availability	1-3 business days
Species Reactivity	Human
Format	Antigen affinity purified
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit Ig
Purity	Antigen affinity
UniProt	Q14956
Applications	Western Blot: 1:1000
Limitations	This GPNMB antibody is available for research use only.

Description

The protein encoded by this gene is a type I transmembrane glycoprotein which shows homology to the pMEL17 precursor, a melanocyte-specific protein. GPNMB shows expression in the lowly metastatic human melanoma cell lines and xenografts but does not show expression in the highly metastatic cell lines. GPNMB may be involved in growth delay and reduction of metastatic potential. Two transcript variants encoding different isoforms have been found for this gene.

Application Notes

Titration of the GPNMB antibody may be required due to differences in protocols and secondary/substrate sensitivity.

Immunogen

A portion of amino acids 541-569 from the human protein was used as the immunogen for this GPNMB antibody.

Storage

Aliquot the GPNMB antibody and store frozen at -20oC or colder. Avoid repeated freeze-thaw cycles.