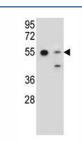
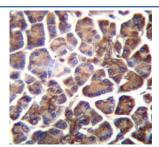
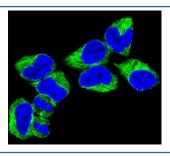


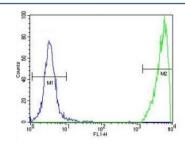
GNAS Antibody (F40026)


Catalog No.	Formulation	Size
F40026-0.4ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.4 ml
F40026-0.08ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.08 ml

Bulk quote request


Availability	1-3 business days
Species Reactivity	Human
Predicted Reactivity	Bovine, Hamster, Mouse, Pig, Rat
Format	Antigen affinity purified
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit Ig
Purity	Antigen affinity
UniProt	Q5FWY2
Applications	Western Blot : 1:1000 IHC (Paraffin) : 1:10-1:50 Immunofluorescence : 1:10-1:50 Flow Cytometry : 1:10-1:50
Limitations	This GNAS antibody is available for research use only.


Western blot analysis of GNAS antibody and 293 cell lysate (2 ug/lane) either nontransfected (Lane 1) or transiently transfected (2) with the GNAS gene. Predicted molecular weight ~46kDa.


GNAS antibody western blot analysis in 293, NCI-H292 lysate. Predicted molecular weight ~46kDa.

GNAS antibody immunohistochemistry analysis in formalin fixed and paraffin embedded human pancreas tissue.

Confocal immunofluorescent analysis of GNAS antibody with 293 cells followed by Alexa Fluor 488-conjugated goat anti-rabbit IgG (green). DAPI was used as a nuclear counterstain (blue).

GNAS antibody flow cytometric analysis of 293 cells (green) compared to a negative control cell (blue). FITC-conjugated goat-anti-rabbit secondary Ab was used for the analysis.

Description

Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The Gs protein is involved in hormonal regulation of adenylate cyclase: it activates the cyclase in response to beta-adrenergic stimuli. Alternative splicing of downstream exons of the GNAS gene is observed, which results in different forms of the stimulatory G protein alpha subunit, a key element of the classical signal transduction pathway linking receptor-ligand interactions with the activation of adenylyl cyclase and a variety of cellular reponses. Multiple transcript variants have been found for this gene, but the full-length nature and/or biological validity of some variants have not been determined. Mutations in this gene result in pseudohypoparathyroidism type 1a, pseudohypoparathyroidism type 1b, Albright hereditary osteodystrophy, pseudopseudohypoparathyroidism, McCune-Albright syndrome, progressive osseus heteroplasia, polyostotic fibrous dysplasia of bone, and some pituitary tumors.

Application Notes

Titration of the GNAS antibody may be required due to differences in protocols and secondary/substrate sensitivity.

Immunogen

A portion of amino acids 287-315 from the human protein was used as the immunogen for this GNAS antibody.

Storage Aliquot the GNAS antibody and store frozen at -20oC or colder. Avoid repeated freeze-thaw cycles.