

Cyclin B1 Antibody (CCNB1) (F52191)

Catalog No.	Formulation	Size
F52191-0.4ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.4 ml
F52191-0.08ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.08 ml

[Bulk quote request](#)

Availability	1-3 business days
Species Reactivity	Human
Predicted Reactivity	Mouse, Rat, Bovine, Hamster
Format	Antigen affinity purified
Host	Rabbit
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit Ig
Purity	Antigen affinity
UniProt	P14635
Localization	Nuclear, cytoplasmic
Applications	Western Blot : 1:1000
Limitations	This Cyclin B1 antibody is available for research use only.

Description

Essential for the control of the cell cycle at the G2/M (mitosis) transition. [UniProt]

Application Notes

Titration of the Cyclin B1 antibody may be required due to differences in protocols and secondary/substrate sensitivity.

Immunogen

A portion of amino acids 155-182 from the human protein was used as the immunogen for this Cyclin B1 antibody.

Storage

Aliquot the Cyclin B1 antibody and store frozen at -20oC or colder. Avoid repeated freeze-thaw cycles.