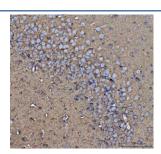
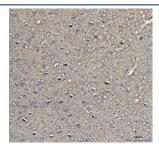
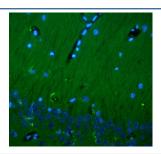


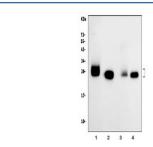
CD90 Antibody (R32658)

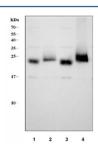

Catalog No.	Formulation	Size
R32658	0.5mg/ml if reconstituted with 0.2ml sterile DI water	100 ug

Bulk quote request


Availability	1-3 business days
Species Reactivity	Mouse, Rat
Format	Antigen affinity purified
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit IgG
Purity	Antigen affinity
Buffer	Lyophilized from 1X PBS with 2% Trehalose
UniProt	P01831
Localization	Cytoplasmic, membranous
Applications	Western Blot : 0.5-1ug/ml Immunohistochemistry (FFPE) : 2-5ug/ml Immunofluorescence : 5ug/ml
Limitations	This CD90 antibody is available for research use only.


IHC testing of FFPE mouse spleen tissue with CD90 antibody. Required HIER: steam section in pH8 EDTA for 20 min and allow to cool prior to testing.


IHC testing of FFPE mouse brain tissue with CD90 antibody. Required HIER: steam section in pH8 EDTA for 20 min and allow to cool prior to testing.


IHC testing of FFPE rat brain tissue with CD90 antibody. Required HIER: steam section in pH8 EDTA for 20 min and allow to cool prior to testing.

Immunofluorescent staining of FFPE rat brain tissue with CD90 antibody (green) and DAPI nuclear stain (blue). Required HIER: steam section in pH8 EDTA for 20 min and allow to cool prior to testing.

Western blot testing of 1) mouse thymus, 2) mouse brain, 3) rat thymus and 4) rat brain tissue lysate with CD90 antibody. Predicted molecular weight 18~35 kDa depending on glycosylation level.

Western blot testing of 1) rat brain, 2) rat thymus, 3) mouse brain and 4) mouse thymus tissue lysate with CD90 antibody. Predicted molecular weight 18~35 kDa depending on glycosylation level.

Description

CD90 (Cluster of Differentiation 90) or Thy-1 is a heavily N-glycosylated, glycophosphatidylinositol (GPI) anchored conserved cell surface protein with a single V-like immunoglobulin domain, originally discovered as a thymocyte antigen. The CD90 gene is mapped to 11q23.3. Thy-1 can be used as a marker for a variety of stem cells and for the axonal processes of mature neurons. Structural study of Thy-1 lead to the foundation of the Immunoglobulin superfamily, of which it is the smallest member, and led to the first biochemical description and characterization of a vertebrate GPI anchor.

Application Notes

Optimal dilution of the CD90 antibody should be determined by the researcher.

Immunogen

Amino acids Q20-C131 from the mouse protein were used as the immunogen for the CD90 antibody.

Storage

After reconstitution, the CD90 antibody can be stored for up to one month at 4oC. For long-term, aliquot and store at -20oC. Avoid repeated freezing and thawing.				