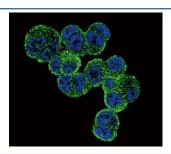
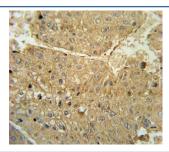
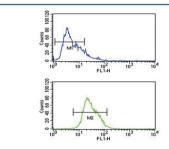

ADH1C Antibody / Alcohol dehydrogenase 1C (F54417)

Catalog No.	Formulation	Size
F54417-0.4ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.4 ml
F54417-0.08ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.08 ml


Bulk quote request

Availability	1-3 business days
Species Reactivity	Human
Format	Purified
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit Ig
Purity	Antigen affinity purified
UniProt	P00326
Localization	Cytoplasmic
Applications	Flow Cytometry: 1:25 (1x10e6 cells) Immunofluorescence: 1:25 Immunohistochemistry (FFPE): 1:25 Western Blot: 1:500-1:2000
Limitations	This ADH1C antibody is available for research use only.




Western blot testing of 1) non-transfected and 2) transfected 293 cell lysate with ADH1C antibody.

Immunofluorescent staining of human T-47D cells with ADH1C antibody (green) and DAPI nuclear stain (blue).

IHC testing of FFPE human hepatocarcinoma tissue with ADH1C antibody. HIER: steam section in pH6 citrate buffer for 20 min and allow to cool prior to staining.

Flow cytometry testing of human CCRF-CEM cells with ADH1C antibody; Blue=isotype control, Green= ADH1C antibody.

Description

This gene encodes class I alcohol dehydrogenase, gamma subunit, which is a member of the alcohol dehydrogenase family. Members of this enzyme family metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Class I alcohol dehydrogenase, consisting of several homoand heterodimers of alpha, beta, and gamma subunits, exhibits high activity for ethanol oxidation and plays a major role in ethanol catabolism. Three genes encoding alpha, beta and gamma subunits are tandemly organized in a genomic segment as a gene cluster.

Application Notes

The stated application concentrations are suggested starting points. Titration of the ADH1C antibody may be required due to differences in protocols and secondary/substrate sensitivity.

Immunogen

A portion of amino acids 231-260 from the human protein was used as the immunogen for the ADH1C antibody.

Storage

Aliquot the ADH1C antibody and store frozen at -20oC or colder. Avoid repeated freeze-thaw cycles.				