

ACAA1 Antibody (F47643)

Catalog No.	Formulation	Size
F47643-0.4ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.4 ml
F47643-0.08ML	In 1X PBS, pH 7.4, with 0.09% sodium azide	0.08 ml

[Bulk quote request](#)

Availability	1-3 business days
Species Reactivity	Human
Format	Antigen affinity purified
Host	Rabbit
Clonality	Polyclonal (rabbit origin)
Isotype	Rabbit Ig
Purity	Antigen affinity
UniProt	P09110
Applications	Western Blot : 1:1000
Limitations	This ACAA1 antibody is available for research use only.

95
72
55
36
28

ACAA1 antibody western blot analysis in human 293 lysate. Predicted molecular weight ~44 kDa.

Description

The ACAA1 gene encodes an enzyme operative in the beta-oxidation system of the peroxisomes. Deficiency of 3-ketoacyl-CoA thiolase (peroxisomal) leads to pseudo-Zellweger syndrome. Alternative splicing results in multiple transcript variants.

Application Notes

Titration of the ACAA1 antibody may be required due to differences in protocols and secondary/substrate sensitivity.

Immunogen

A portion of amino acids 147-176 from the human protein was used as the immunogen for this ACAA1 antibody.

Storage

Aliquot the ACAA1 antibody and store frozen at -20oC or colder. Avoid repeated freeze-thaw cycles.